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Objectives

Make you familiar with the concepts of
Set-Based Design

Help you think about the characteristics of
set-based design in terms of Decision Theory
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What is Set-Based Design?
“Point-based” Design
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Foundations by Ward, Sobek & Liker

Ward (1989):
• Mechanical Design Compiler

• Compile high-level description
into set of possible solutions

• Eliminate through labeled
interval propagation

• Eliminate only alternatives that 
can be proven not to work

Sobek, Ward & Liker (1999):
• Case study: Toyota Production 

system

• Engineers communicate in terms
of sets

• Multiple design alternatives are 
developed in parallel

• Paradox: value despite apparent 
"inefficiencies"
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Simple Example: Design of Pneumatic System
(adapted from Ward, 1989)

Catalog of Components:
• 50 motors
• 30 compressors, …

Interval-Based Characterization of Components
• Motor: RPM (nom load) = [1740,1800]
• Cylinder: Force = [0,100] N

Design Requirements
• Load: Velocity = every [0,2] m/s
• Power-supply: 110V AC

Propagation of set-based requirements
• Yields relatively small set of feasible solutions

Motor Compressor Cylinder LoadValve
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Some Short-Comings in Current State of the Art

Only algebraic equations
• No differential or partial differential equations
• No black boxes – equations need to be expressed symbolically

Only for catalog design – configuration of discrete options
• Significant extensions are needed to support continuous variables

Only pure intervals – no probabilities
• Ignoring probability information often leads to overly conservative designs

Weak on optimization beyond constraint satisfaction
• What if satisfying all the constraints still leaves many alternatives?
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Need for a Strong Foundation
Our approach:  Build on the foundation of Decision Theory

Decision
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Normative Decision Theory

+

Reality of Design Context
• Bounded rationality
• Limited resources
• Incomplete knowledge
• Diverse information and 

knowledge needs
• Collaboration among 

geographically distributed 
stakeholders

• …

Formal, Systematic but Practical Methods for Engineering Design 

Methods ToolsFormalisms Representations
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Trade-off Between Information Cost and Value

Cost   Benefit

Information Economics

Information is only valuable
to the extent that it leads to better decisions

No change in the decision benefit of information is zero
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Overview of Presentation

What is Set-Based Design?
Current Limitations of Set-Based Design
Set-Based Design from a Decision-Theoretic Perspective
• Set-based design and sequential decision making
• Expressing the utility of decision alternatives as intervals
• Decision policy:  eliminate non-dominated design alternatives
• Searching through a set of non-dominated alternatives: Branch & Bound

Implication for Modeling and Simulation in Design
Implications for PLM
Conclusion
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Set-Based Design and Sequential Decisions

Vehicle type
decision alternatives car

Engine/motor type
decision alternatives gas electric

bike

diesel
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Sequential
decisions:

Vehicle type decision alternatives

car bike

Gas car

Electric car

Diesel car

Gas bike

Electric bike

Diesel bike

In the first decisions, 
the designer chooses

from a set

Each decision alternative is a set of design alternatives
Decision alternatives are imprecisely defined
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Set-Based Decision Alternatives

150 hp Gas Engine
SET OF

s
Mass = ?Cost = ?

Efficiency = ? Reliability = ?

[100,300] kg

[95,99] %[25,30] %

$ [400,1000]

Imprecise Alternative Imprecise Performance



Systems Realization Laboratory

Imprecision and Variability P-Box
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Other Sources of Imprecision in Design

Some other sources of uncertainty best represented by intervals
• Simulations and analysis models – abstractions of reality
• Statistical data – finite samples of environmental factors
• Bounded rationality – imprecise subjective probabilities
• Expert opinion – lack or conflict of information
• Preferences – incomplete or non-stationary
• Numerical implementation – limited machine precision

Consequence:

The performance (expected utility) of a decision alternative
is best expressed in terms of intervals

e.g. mass = [100,300] kg, cost = $ [400,1000] utility = […,…]
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Decision Making Under Interval Uncertainty

In normative decision theory:
Decision Policy = Maximize Expected Utility

In set-based design:
Uncertainty expressed as intervals or probability boxes

Expected Utility Interval of Expected Utility

How to make a decision when expected utilities are intervals?
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Decision Making for Intervals of Expected Utility

Consider 3 design alternatives {A, B, C} 
with expected utility intervals as shown:

A B C

E
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• Interval Dominance 
• Maximality
• Γ-maximin
• Γ-maximax
• Hurwicz criterion η
• E-admissibility

Which alternative is
the most preferred?

Possible policies include:

How can a decision be reached?
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Interval Dominance Decision Policy

Consider 3 design alternatives {A, B, C} 
with expected utility intervals as shown: upper bound of A

<
lower bound of C

A B C
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C dominates A
eliminate A

B and C continue to be 
considered (set-based design)

Eliminate only alternatives that are provably dominated

X
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The Myth of "Optimal Design"

Due to uncertainty,
"optimal design"
cannot be determined

Set of non-dominated 
solutions

When uncertainty is large, 
selecting only the
"optimal design" often 
leads to back-tracking 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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What If Non-Dominated Set is Too Large?

Search non-dominated set using
Branch and Bound approach
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What If Non-Dominated Set is Too Large?

Refine design alternatives
Reduces imprecision in performance

Allows for additional elimination 
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Γ-maximin Decision Policy

Consider 3 design alternatives {A, B, C} 
with expected utility intervals as shown: Chose the alternative with the 

highest lower-bound 

Robust Solution
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Should only be used

as a tie-breaker

Avoid a very bad outcome for sure.
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Consequences for Set-Based Design
Decision Alternatives and their Expected Utilities are Sets

Unlikely that a single "point solution" will dominate
• "Point solutions" are often greedy result in expensive back-tracking
• "Point solutions" force us to make assumptions that are not supported by 

current information

Constraint propagation versus non-domination
• Intersection of feasible sets for individual disciplines or sub-systems

= elimination of dominated solutions
• Infeasible = overall utility is unacceptably low = dominated
• But: set of feasible solution is likely to be large need for efficient search

Uncertain information should be represented accurately
• Without overstating what is known
• But also without omitting much information

need for probabilistic or even hybrid (p-box) representations
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Challenges for Modeling and Simulation

Uncertainty quantification
• Every model is an abstraction of reality and thus wrong
• Model accuracy (systematic error) must be stated in terms of intervals
• Uncertainty quantification of model parameters / inputs / outputs

Need for abstract models
• Allow designers to quickly eliminate large portions of the design space
• Currently not addressed opportunity: abstraction through data mining

How to capture abstract models without losing much information?
• Capturing interval dependence is critical
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Challenges for PLM

Representations of design alternatives in terms of sets
• Most important at systems engineering level
• Set-based geometric representations – leverage GD&T support

Representations for communicating preferences
• Requirements are too limiting
• Better communication mechanism than requirements flow-down

Methods for efficiently propagating constraints
• Interval arithmetic may yield hyper-conservative results

Methods for efficiently searching set-based design spaces
• Branch and bound:  How to branch efficiently?
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Conclusions

Set-Based Design
• Foundation developed by Ward et al. starting in late 80's
• Empirical evidence of superior results:  Toyota
• Many remaining limitations and research issues

Need for a strong foundation:  Decision Theory
• All sequential design methods are set-based
• Expected utility of decision alternatives should be expressed as intervals
• Decision policy:  eliminate non-dominated design alternatives
• Searching through a set of non-dominated alternatives: Branch & Bound
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