CPM: A Core Product Model for PLM support

Steven J. Fenves, Guest Researcher

Manufacturing Systems Integration Division, NIST

sfenves@cme.nist.gov

in collaboration with Sebti Foufou, Conrad Bock, Rachuri Sudarsan, Ram D. Sriram and others

CURRENT STATUS

- Many (most?) PDM systems built on top of legacy CAD systems
- 2) Many (most?) PDM systems are blind to the files they manage
- 3) Many (most?) commercial PLM support systems built on top of PDM systems

What is wrong with this picture?

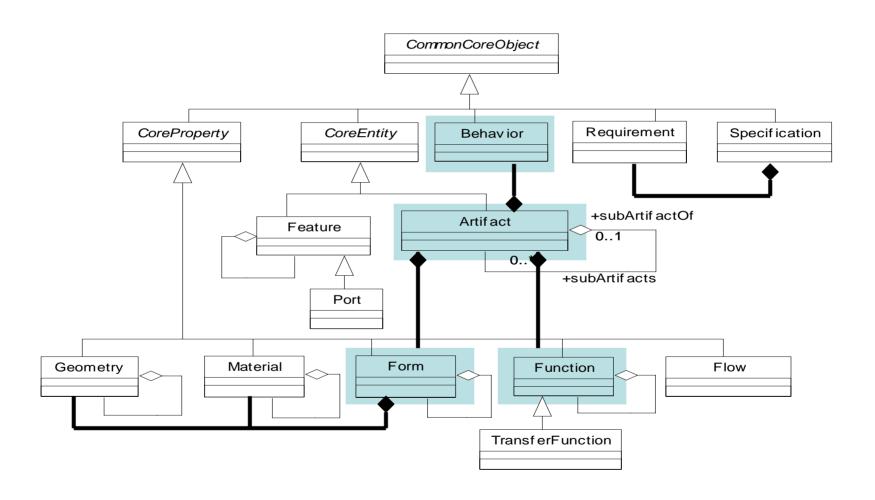
CONSEQUENCES

- Can only represent the product's form (more precisely, its geometry)
- 2) Can retrieve information only by file name (how many people in marketing etc., know the engineers' file names?)
- 3) Can support only that segment of design process that deals with the product's form (embodiment design and later)

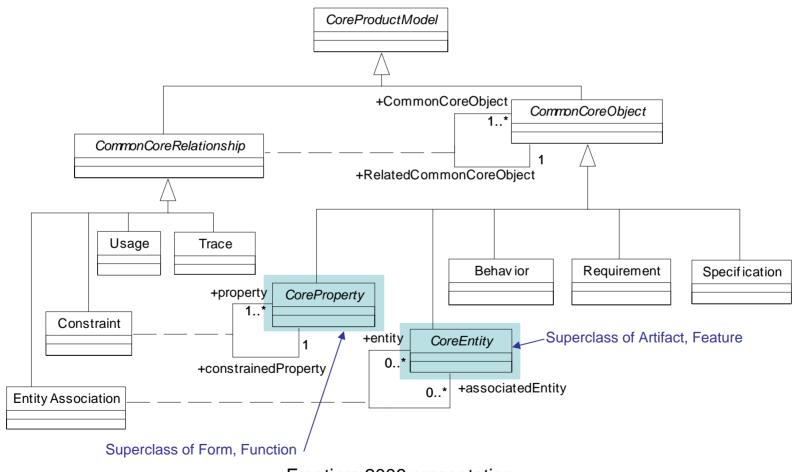
WHAT IS NEEDED

A representation that gives equal status to three aspects of the product: its function, its form and its behavior and can therefore support:

- functional reasoning in the conceptual stages
- "traditional" engineering design stages
- behavior modeling in post-design stages


CORE PRODUCT MODEL

- Started as an in-house coordination project
- Evolved into conceptual data model for PLM support
- An abstract model with generic semantics


KEY CONCEPTS

- CPM is based on the concepts of Artifact and Feature:
 - Artifact = a distinct entity (component, part, subassembly, assembly)
 - Feature = a portion of the artifact's form with some specific function (design feature, analysis feature, ...)
- Artifact is the aggregation of a triad:
 - Function = what the artifact is supposed to do; synonymous with the term *intended behavior*.
 - Form = the proposed design solution; modeled in terms of Geometry and Material.
 - **Behavior** = how the artifact's form implements its function; application of a behavioral model simulates the *observed behavior* of the artifact's form.

CPM OBJECT CLASSES

RELATIONSHIP CLASSES

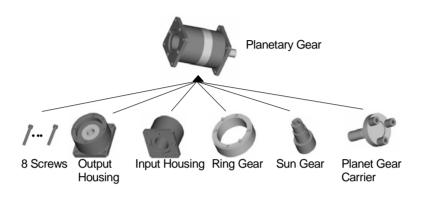
LEVELS OF CPM

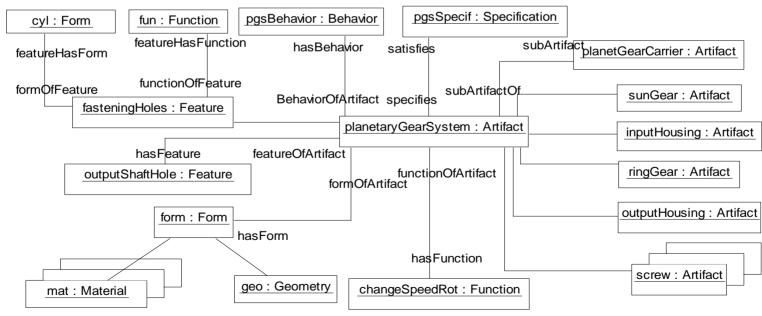
CPM eventually to exist at three levels:

- conceptual
- intermediate
- implementation

CONCEPTUAL LEVEL

- As presented: abstract model without domain-specific semantics
- Suitable for developing extensions:
 - Assembly model
 - Product family evolution model
 - Design-analysis integration model
 - etc


INTERMEDIATE MODEL


- Suitable for low-volume proof-of-concept applications,
 e. g., the NIST design repository semantics still buried
- Two enabling mechanisms:
 - each object has an attribute type; can be used to build taxonomies
 - each object has an associated object Information with an attribute properties, consisting of a list of attribute-value pairs

UML-to-XML converter available

AN EXAMPLE

IMPLEMENTATION MODEL

- None exists yet
- Facilities provided to aid a model compiler:
 - create subclasses of Artifact from the classification hierarchy in the type slot; and
 - define attributes on the subclasses from the attribute names in properties
- Full application domain semantics can be supported/enforced

CONCLUSIONS

- A bit of serendipity: in-house effort with outside potential
- Conceptual level well explored, but questions remain:
 - do features have (independent) behaviors?
 - do we need to introduce Structure and/or Technology as top aspects of Form?
 - what other generic concepts are needed?
- The important questions are:
 - is the model robust enough for implementation?
 - is anyone interested in implementing it (NIST can't)?
- Your answers to these questions are welcome

sfenves@cme.nist.gov